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Tutorial 8

We recall some definitions.

Definition 1. Let A be a subset of the state space S. The hitting time TA of A is defined by

TA := min{n ≥ 1 : Xn ∈ A}.

For a singleton A = {a}, we will denote the hitting time by Ta rather than the cumbersome notation T{a}.

Notation 1. Set
ρxy := Px(Ty < ∞)

i.e. ρxy denotes the probability that a Markov chain starting at x will be in some other state y at some
positive time. In particular ρyy denotes the probability that a Markov chain starting at y will ever return
to y.

The notation Px denotes probabilities of various events defined in terms of a Markov chain starting at x e.g.

P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm | X0 ∈ A0, . . . , Xn−1 ∈ An−1, Xn = x)

= P(Xn+1 ∈ B1, . . . , Xn+m ∈ Bm | Xn = x)

= Px(X1 ∈ B1, . . . , Xm ∈ Bm)

Definition 2. A state y is called recurrent if ρyy = 1 and transient if ρyy < 1.

We say a state x leads to another state y if ρxy > 0.

Definition 3. A non-empty subset C ⊆ S is said to be closed if no state inside of C leads to any state
outside of C.

A closed set C is called irreducible if x leads to y for all x, y ∈ C.

A Markov chain is called irreducible if its state space is irreducible i.e. every state leads back to itself and
also to every other state.

Hence an irreducible Markov chain is necessarily either recurrent or transient.

Recurrence of Queuing Chains

Let us first review about queuing chains; you may also see example 5 in section 1.3 of the textbook.

Consider your favourite restaurant at CUHK. During lunch time, lots of students would come in and form
a waiting line.

Suppose the crowed has the following pattern: when you walk in and you see there are some students waiting
in line, then exactly one student (i.e. the one in the front most) will be served during your observation;
however, if you saw there was no waiting line, then no one will be served (of course! Unless you step in and
order something.).

Let ξn denote the number of students arriving at time n and we assume that ξ1, ξ2, . . . are independent
non-negative integer-valued random variables having a common density f and hence a common mean µ.
This assumption of independence is natural: number of students that come in at time 1 and at time 2 are
expected to be independent, because we can plausibly assume most of time these two groups of people do not
know each other, for example; plus there are tons of factors that would affect the number of students coming
to a restaurant e.g. the time classes end and the time buses arrive etc.; these effects should be assumed to be
negligibly small otherwise we would not be able to analyze such complicated situations. In fact, analyzing
such an ideal model can provide quite a lot useful information.

Let Xn denote the number of students present at time n. Then

Xn+1 =

{
ξn+1, if Xn = 0

Xn + ξn+1 − 1, if Xn ≥ 1
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where the −1 indicates the exact one student that was being served at time n.

Xn is a Markov chain with transition function

P (x, y) = P(Xn+1 = y | Xn = x) =

{
f(y), x = 0

f(y − x+ 1), x ≥ 1

Now, suppose that this queuing chain is irreducible. Then by exercise 37 from chapter 1 of the textbook 1,
we have that f(0) > 0 and f(0) + f(1) < 1. Also, by section 1.8.2 and section 1.9.2, we know that the chain
is recurrent if µ ≤ 1 and transient if µ > 1.

Claim. We will show that in the recurrent case

m0 =
1

1− µ
(1)

where µ := E0[T0].

Remark. It would then follow from (1) that if µ < 1, then m0 < ∞ and hence 0 is a positive recurrent state.
Thus by irreducibility the chain is positive recurrent.

On the other hand, if µ = 1, then m0 = ∞ and hence 0 is a null recurrent state. Thus we conclude that the
chain is null recurrent in this case.

Therefore, an irreducible queuing chain is positive recurrent if µ < 1 and null recurrent if µ = 1, and
transient if µ > 1.

Now let us prove the claim.

Proof. Consider the chain starting at some positive integer x > 0. Then Tx−1 denotes the time to go from
state x to state x− 1, and Ty−1 − Ty, 1 ≤ y ≤ x− 1 denotes the time to go from state y to state y − 1.

Since the chain goes at most one step to the left at a time (by definition!), the Markov property insures that
the random variables

Tx−1, Tx−2 − Tx−1, . . . , T0 − T1

are independent. They are also identically distributed; for each of them is distributed as 2

min{n ≥ 1 : ξ1 + · · ·+ ξn = n− 1}.

The probability generation function G(t) of the time to go from state 1 to state 0 is

G(t) =

∞∑
n=1

tnP1(T0 = n)

Now, recall that the probability generating function of a sum of independent non-negative integer-valued
random variables is the product of their respective probability generating functions.

If the chain starts at x, then

T0 = Tx−1 + (Tx−2 − Tx−1) + · · ·+ (T0 − T1)

1See also solutions to homework 3.
2To understand this, you may substitute a concrete example: say the chain hits x − 1 at m and then hits x − 2 at some

later time m+ 5. In this case Tx−2 − Tx−1 = 5 and in order for this to happen, it must be true that ξm+1 + · · · ξm+5 = 5− 1
(do a model computation using the definition of Xn!).
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is the sum of x independent random variables, each having the probability generating function G(t). Thus
it follows that

[G(t)]x =

∞∑
n=1

tnPx(T0 = n). (2)

Step 1. We will now show that
G(t) = tΦ(G(t))

where Φ is the probability generating function of f .

By shifting the index, we can rewrite

G(t) =

∞∑
n=0

tn+1P1(T0 = n+ 1) = tP (1, 0) + t

∞∑
n=1

tnP1(T0 = n+ 1).

By recalling the property 3

Px(Ty = n+ 1) =
∑
z ̸=y

P (x, z)Pz(Ty = n) (3)

we have

G(t) = tP (1, 0) + t

∞∑
n=1

tnP1(T0 = n+ 1)

= tP (1, 0) + t

∞∑
n=1

tn
∑
z ̸=0

P (1, z)Pz(T0 = n) take x = 1, y = 0 in (3)

= tP (1, 0) + t
∑
z ̸=0

P (1, z)

∞∑
n=1

tnPz(T0 = n) (interchange the order)

= tP (1, 0) + t
∑
z ̸=0

P (1, z)[G(t)]z by (2)

= t

f(0) +∑
z ̸=0

f(z)[G(t)]z

 since P (1, z) = f(z) for z ≥ 0

= tΦ[G(t)]

Step 2. Next, we will show that

lim
t→1

G′(t) =
1

1− µ
.

Indeed, by differentiating with respect to t, we get

G′(t) = Φ[G(t)] + tG′(t)Φ′[G(t)].

Solving for G′(t), we get

G′(t) =
Φ[G(t)]

1− tΦ′[G(t)]
.

Since the probability generating functions go to 1 as t → 1 and

lim
t→1

Φ′(t) = lim
t→1

∞∑
x=1

xf(x)tx−1 =

∞∑
x=1

xf(x) = µ,

3See (29) in chapter 1 of the textbook.



TA: Bin Wang
Email: bwang@math.cuhk.edu.hk

MATH 4240 Stochastic Processes
Academic Year 2023/24

Mar 18th, 2024
Page 4

the result follows.

Step 3. Finally, we will show
lim
t→1

G′(t) = m0

and the proof will be complete.

Since P (1, x) = P (0, x) for x ≥ 0, it follows from (3) that

P1(T0 = n+ 1) =
∑
z≥1

P (1, z)Pz(T0 = n) =
∑
z ̸=1

P (0, z)Pz(T0 = n) = P0(T0 = n+ 1).

Hence,

G(t) =

∞∑
n=1

tnP1(T0 = n) =

∞∑
n=1

tnP0(T0 = n).

Thus, we have

lim
t→1

G′(t) = lim
t→1

∞∑
n=1

ntn−1P0(T0 = n)

=

∞∑
n=1

nP0(T0 = n)

= E0[T0]

= m0


